

**Four ways to die**

Stars can die in four different ways, all of which are shown on these pages. Our Sun, a typical star, will follow the central path, but not yet—it has enough fuel to keep shining for 5 billion years. When larger stars die, they turn hydrogen into heavier chemical elements such as carbon and oxygen, which are later recycled to form new stars and planets. All the atoms in your body were created this way.

**5** billion tons—the weight of one teaspoonful of material from the core of a neutron star.

**Stable star**

Every young star goes through a stable phase in which it shines steadily.

**Small stars**

Stars with less than half the mass of the Sun fade away very slowly. Once the hydrogen in the core is used up, the star begins to feed off hydrogen in its atmosphere. But it doesn't generate enough gravity to use other elements as fuel, so it slowly shrinks to become a black dwarf. This will take far longer than the age of the Universe—up to a trillion years.

Star begins to shrink

# Star death

All stars eventually run out of fuel and die. Most fade away quietly, but the most massive stars self-destruct in a huge explosion that can outshine an entire galaxy.

Like Earth, stars generate the force of gravity, which squeezes their hot cores. The more matter a star has, the greater the force of gravity and the hotter and denser the core becomes. The way a star dies depends on how much matter it contains (its mass) and how powerfully its core is squeezed by gravity.

Stars make heat and light by the process of nuclear fusion: hydrogen atoms in the core crash together to form helium, releasing energy. In small stars, when hydrogen in the core runs out, the star's light slowly fades. But in more massive stars, the core is so hot and dense that fusion can spread beyond it, changing the star's appearance. The most massive stars are eventually overwhelmed by their own gravity, which crushes them so violently that they collapse into a pinprick to create a black hole.

**Medium stars**

When a Sunlike star has used up the hydrogen in its core, nuclear fusion spreads outside the core, making the star expand into a red giant. The core collapses until it is hot and dense enough to fuse helium, but eventually it runs out of helium too. Finally, it becomes a white dwarf, and its outer layers spread into space as a cloud of debris.

Star expands

**Massive stars**

Stars over eight times more massive than our Sun end their lives in strange and violent ways. The heat and pressure inside the core become so great that nuclear fusion can not only fuse hydrogen atoms together to form helium but can fuse helium and larger atoms to create elements such as carbon or oxygen. As this takes place, the star swells into the largest star of all: a supergiant.

Star expands

